

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 64 (2008) 1971-1982

www.elsevier.com/locate/tet

Stereoconvergent synthesis of C_1-C_{17} and $C_{18}-C_{25}$ fragments of bafilomycin A_1^{\ddagger}

J.S. Yadav*, K. Bhaskar Reddy, G. Sabitha

Organic Division, Indian Institute of Chemical Technology, Hyderabad 500007, Andhra Pradesh, India

Received 3 August 2007; received in revised form 31 October 2007; accepted 15 November 2007 Available online 3 December 2007

Abstract

The effective syntheses of the enantiomerically pure C1–C17 **2** and C18–C25 **3** fragments as promising synthetic intermediates of bafilomycin A₁, **1** have been achieved.

© 2007 Published by Elsevier Ltd.

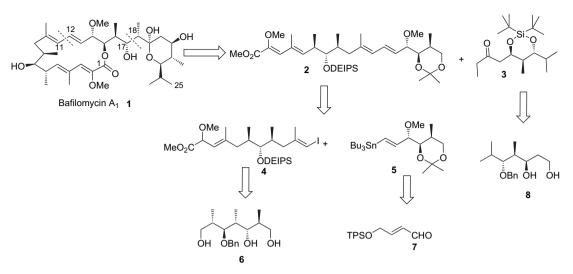
Keywords: Bafilomycin A1; Intermediates; Bicyclic precursor; Aldol; Vinyl stannane; Vinyl iodide; Evans-aldol

1. Introduction

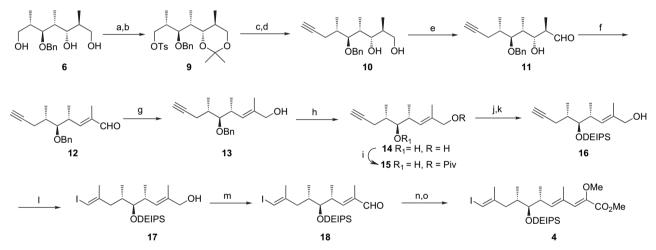
Bafilomycin A_1 **1**, is a 16-membered macrolide, first isolated from a culture of Streptomyces griseus sp. by Werner et al. in 1983.¹ It is a potent vacuolar H⁺-ATPase (V-ATPases) inhibitor.² The V-ATPases are known to participate in bone resorption and inhibitors of such enzymes may potentially be used for the treatment of osteoporosis.³ Furthermore, this compound displayed broad antibacterial, antifungal,⁴ and immunosuppressive activities.⁵ Bafilomycin A₁ contains an acid and base-sensitive six-membered hemiketal that participates in a hydrogen-bond network with the C₉, C₁₇ the hydroxyl group and the carbonyl of the 16-membered lactone that is responsible for biological activity. In light of its interesting chemical structure and profile of biological activity, bafilomycin A1 has been an attractive target for synthesis. Consequently, four total syntheses⁶ and several partial contributions⁷ of bafilomycin A₁ have been reported by various research groups so far.

2. Results and discussion

The retrosynthesis, we envisaged for the synthesis of bafilomycin A_1 is shown in Scheme 1. The macrolactone can be opened and then disconnected between C_{11} and C_{12} via a Stille-coupling reaction. As part of our interest in the synthesis of bioactive natural products,⁸ herein we report the synthesis of the C_1-C_{11} , $C_{12}-C_{17}$, and $C_{18}-C_{25}$ fragments of bafilomycin A_1 , and also the coupling of C_1-C_{11} fragment with the $C_{12}-C_{17}$ fragment.


2.1. Synthesis of the $C_1 - C_{11}$ fragment 4

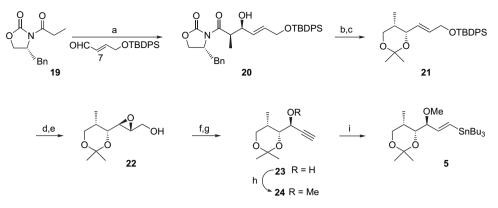
The synthesis of the C_1-C_{11} fragment 4 started with a known triol^{8a,b} 6 (Scheme 2). The 1,3-diol group in 6 was protected as an acetonide employing 2,2-dimethoxy propane and PPTS in CH₂Cl₂, and the free primary hydroxyl group was tosylated under standard conditions to yield the tosylate 9. The tosyl compound 9 was treated with lithium acetylide—ethylenediamine complex in DMSO to give the acetylenic compound and the acetonide group was deprotected to yield the diol 10. Oxidation of the primary alcohol in 10 with IBX furnished aldehyde 11. When the secondary hydroxyl group in compound 11 was acetylated using Ac₂O, Et₃N in the presence of DMAP,


[★] IICT communication no.: 061108.

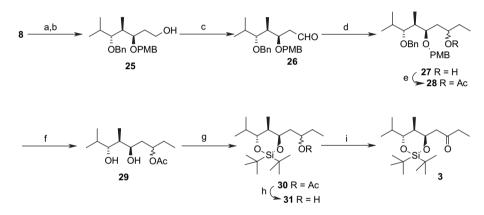
^{*} Corresponding author. Tel.: +91 40 27193434; fax: +91 40 27160512. *E-mail address:* yadavpub@iict.res.in (J.S. Yadav).

^{0040-4020/\$ -} see front matter 2007 Published by Elsevier Ltd. doi:10.1016/j.tet.2007.11.091

Scheme 1. Retrosynthetic analysis of bafilomycin A₁.


Scheme 2. Reagents and conditions: (a) 2,2 DMP, PPTS, CH_2Cl_2 , 0 °C to rt, 3 h, 88%. (b) TsCl, NEt₃, DMAP, CH_2Cl_2 , 96%. (c) $LiC \equiv CH$, $H_2N(CH_2)_2NH_2$, DMSO, rt, 1 h, 80%. (d) PPTS, MeOH, 3 h, 84%. (e) IBX, DMSO, CH_2Cl_2 , 0 °C to rt, 3 h, 62%. (f) Et_3N , Ac₂O, DMAP, CH_2Cl_2 , 0 °C to rt, 85%. (g) NaBH₄, MeOH, 0 °C to rt, 1 h, 92%. (h) Li, liq NH₃, THF, 2 min, 88%. (i) PvCl, Et_3N , CH_2Cl_2 , 0 °C to rt, 3 h, 94%. (j) DEIPSCl, imidazole, DMF, rt, overnight, 85%. (k) K_2CO_3 , MeOH, rt, overnight, 85%. (l) Cp_2ZrCl_2 , Me_3Al , rt, 10 h then I_2 , THF, -25 °C, 1 h, 82%. (m) MnO₂, CH_2Cl_2 , rt, 1 h, 96%. (n) $CH_2(OMe)$ - CO_2Me , LHMDS, THF, -78 °C, 94%. (o) MeSO₂Cl, Et_3N , DBU, CH_2Cl_2 , 0 °C to rt, 80%.

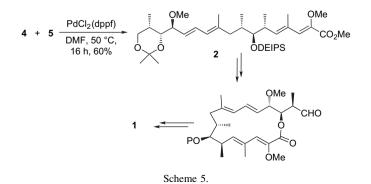
β-elimination took place to give the unsaturated aldehyde **12**. The reduction of aldehyde functionality gave the corresponding alcohol **13** in 92% yield. Treatment of alkyne **13** with Li in liq NH₃ resulted the debenzylated product **14** in 88% yield. Compound **14** was selectively converted into mono pivalylated compound **15**. The free secondary hydroxyl group in compound **15** was silylated using diethylisopropylsilylchloride (DEIPSCI),⁹ imidazole in DMF and the subsequent removal of the pivaloyl group furnished **16**. Negishi's methyl zirconation¹⁰ of compound **16** led to the formation of compound **17**.


Oxidation of the allylic alcohol **17** with MnO_2 gave the corresponding α,β -unsaturated aldehyde **18**. The aldol condensation of **18** with lithium 2-methoxyacetate, followed by mesylation of the resulting alcohol and β -elimination furnished the C1–C11 fragment **4** of bafilomycin A₁ **1**, which was found to be identical with the compound reported by Hanessian et al.^{6g}

2.2. Synthesis of the $C_{12}-C_{17}$ fragment 5

Our synthesis of vinyl stannane intermediate **5** was developed on the basis of Evans asymmetric aldol reaction. Thus, asymmetric aldol reaction of oxazolidene **19** with the aldehyde¹¹ **7** using dibutylboronetriflate and triethylamine provided *syn*-aldol product **20** in 82% yield as single diastereoisomer (Scheme 3). After reduction with LiBH₄, the diol was converted to the corresponding acetonide **21** in 98% overall yield for two steps. Desilylation with TBAF in THF and then exposure of the resulting alcohol to Sharpless epoxidation afforded diastereomeric epoxy alcohols in 78% yield with 8:2 ratio, and were easily separated on silica gel column chromotography. The required major epoxy alcohol **22**, on treatment with Ph₃P/CCl₄, followed by a base induced double elimination with Li/liq NH₃ a protocol developed by our group¹²

Scheme 3. Reagents and conditions: (a) *n*-Bu₂BOTf, Et₃N, CH₂Cl₂, 0 °C to -78 °C then 7, 1 h, 89%. (b) LiBH₄, Et₂O, H₂O, 0 °C, 1 h, 98%. (c) 2,2 DMP, PPTS, CH₂Cl₂, 0 °C, 1 h, 96%. (d) TBAF, THF, 0 °C to rt, 2 h, 95%. (e) Ti(OⁱPr)₄, (-)DIPT, TBHP, CH₂Cl₂, -20 °C, 24 h, 78%. (f) TPP, CCl₄, reflux, 1.5 h, 90%. (g) Li, liq NH₃, Fe(NO)₃, -78 °C, 2 h, 82%. (h) NaH, MeI, THF, 0 °C to rt, 1 h, 98%. (i) Pd(PPh₃)₄, Bu₃SnH, CH₂Cl₂, 0 °C to rt, 0.5 h, 78%.


Scheme 4. Reagents and conditions: (a) PPTS, PMP(OMe)₂, CH₂Cl₂, rt, 1 h, 96%. (b) DIBAL-H, CH₂Cl₂, 0 °C, 1 h, 85%. (c) IBX, DMSO, CH₂Cl₂, 0 °C to rt, 3 h, 83%. (d) Mg/EtBr, THF, 2 h, 90%. (e) Ac₂O, Et₃N, CH₂Cl₂, 0 °C to rt, 1 h, 94%. (f) 5% Pd/C, EtOAc, rt, 1 h, 90%. (g) (t-Bu)₂Si(OTf)₂, 2,6-lutidine, CH₂Cl₂, rt, 1 h, 85%. (h) NaOMe, THF, 1 h, 90%. (i) DMP, CH₂Cl₂, NaHCO₃, 0 °C to rt, 1 h, 88%.

afforded propargylic alcohol **23**. The hydroxyl group in **23** was protected as its methyl ether **24**. Finally, treatment of **24** with tributyltin hydride in the presence of a catalytic quantity of bistriphenylphosphine palladium(II) chloride¹³ led to the desired vinyl stannane C_{12} – C_{17} subunit **5** (Scheme 3). The spectral properties (¹H, IR, mass HRMS) and specific rotation $[\alpha]_D^{25}$ +16.5 (*c* 1.10, CHCl₃) {lit.^{6d} $[\alpha]_D^{25}$ +16.4 (*c* 1.01, CHCl₃)} of vinyl stannane **5** proved to be identical with the reported compound.^{6d}

2.3. Synthesis of the C_{18} - C_{25} fragment 3

The synthesis of the intermediate **3** starts with the known diol **8**, which was reported by us.¹⁴ The diol **8**, upon reaction with *p*-methoxy benzaldehyde dimethyl acetal and *p*-toluene-sulfonic acid (PPTS) resulted the protected compound, which on subsequent regioselective reductive ring-opening reaction with DIBAL-H in CH₂Cl₂ produced the free primary alcohol **25** (Scheme 4), which on oxidation with IBX then furnished the aldehyde **26**. The ethylenic alcohol was easily obtained by reaction of **26** with EtMgBr in THF and the resulting alcohol **27** was converted into the acetyl derivative **28**. Hydrogenolysis of the benzyl and PMB ethers using Pd/C in EtOAc

gave a diol **29** in 90% yield. The diol **29** then was protected with a di-*tert*-butylsilyl group,¹⁵ followed by deacetylation of **30** afforded free hydroxyl compound **31**. Oxidation of **31** using Dess–Martin periodinane afforded the desired $C_{18}-C_{25}$ fragment **3** as a white solid, mp 40–41 °C {lit.^{6d} mp 40.0–40.5 °C}. The spectral properties (¹H, ¹³C NMR, mass, IR, HRMS) and specific rotation $[\alpha]_D^{25}$ +84.8 (*c* 0.9, CHCl₃) {lit.^{6d} $[\alpha]_D^{25}$ +85.2 (*c* 0.89, CHCl₃)} of ethylketo **3** are identical with reported compound.^{6d}

2.4. Coupling of fragments 4 and 5 to obtain 2

The cross-coupling reaction between the vinyl iodide 4 corresponding to the C_1-C_{11} fragment of 1 and the vinyl tributyltin 5 corresponding to the $C_{12}-C_{17}$ fragment of 1 by Stille¹⁶ method using a catalytic amount of PdCl₂(dppf)¹⁷ in DMF at 50 °C for 16 h afforded the desired *E*,*E*-diene 2 in 60% yield (Scheme 5), which has been converted to 1 by coupling with 3.^{6d}

3. Conclusion

Thus we have demonstrated the formal synthesis of bafilomycin A_1 **1** by preparing two important intermediates, viz. C_1-C_{17} fragment **2** and $C_{18}-C_{25}$ fragment **3**, which have been utilized for synthesis of bafilomycin A_1 **1**.^{6d}

4. Experimental

4.1. General

Commercial reagents were used without further purification. All solvents were purified by standard techniques. Infrared (IR) spectra were recorded on a Perkin–Elmer 683 spectrometer. Optical rotations were obtained on a Jasco Dip 360 digital polarimeter. Melting points are uncorrected. NMR spectra were recorded in CDCl₃ on Varian Gemini 200, Bruker 300 or Varian Unity 400 NMR spectrometers. Chemical shifts (δ) are quoted in parts per million and are referenced to tetramethylsilane (TMS) as internal standard. Coupling constants (*J*) are quoted in hertz. Column chromatographic separations were carried out on silica gel (60–120 mesh). Mass spectra were obtained on Finnegan MAT 1020B or micro mass VG 70-70H spectrometers operating at 70 eV using a direct inlet system.

4.1.1. (2S,3S,4S)-3-(Benzyloxy)-2-methyl-4-[(4S,5S)-2,2,5trimethyl-1,3-dioxan-4-yl]entan-1-ol

To a solution of triol 6^8 (5.5 g, 16.4 mmol) in dry dichloromethane (40 mL), 2,2-dimethoxy propane (14.8 mL, 114.6 mmol) and PPTS (2.2 g, 14.1 mmol) were added. The mixture was stirred at ambient temperature for 3 h. Sodium bicarbonate was added to neutralize PPTS and filtered. Removal of solvent and purification by silica gel column chromatography (20%) EtOAc in hexane as eluent) afforded the mono acetonide (5.42 g, 88%) as a white solid, $R_f = 0.60 (1:1 \text{ EtOAc} \text{ and hexane})$. $[\alpha]_D^{25}$ +32.77 (*c* 6.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 0.73 (d, 3H, J=6.8 Hz, CH₃), 0.87 (d, 3H, J=6.8 Hz, CH₃), 1.21 (d, 3H, J=6.8 Hz, CH₃), 1.34 (s, 6H, 2×CH₃), 1.78-2.05 (m, 3H, 3×CH), 2.63 (dd, 1H, J=3.0, 8.3 Hz, CH), 3.42–3.59 (m, 3H, CH and CH₂), 3.62 (dd, 1H, J=5.3, 12.1 Hz, CH), 3.80 -3.90 (m, 2H, CH₂), 4.64 (ABq, 2H, J=11.3, 27.2 Hz, benzylic CH₂), 7.22–7.37 (m, 5H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 138.5, 128.5, 127.6, 127.0, 98.0, 85.6, 75.4, 73.4, 66.2, 64.3, 87.5, 36.3, 30.3, 29.8, 19.5, 16.4, 12.5, 9.8; IR (neat): 3478, 2921, 1617, 1031 cm⁻¹; FABMS: 337 [M+H]⁺; HRMS (ESIMS): m/z calcd for C₂₀H₃₂O₄Na [M+Na]⁺ 359.2198, found 359.2193.

4.1.2. (2S,3S,4S)-3-(Benzyloxy)-2-methyl-4-[(4S,5S)-2,2,5trimethyl-1,3-dioxan-4-yl]pentyl 4-methyl-1benzenesulfonate (**9**)

To a stirred solution of alcohol (5 g, 14.88 mmol) in dry triethylamine (6.25 mL, 44.64 mmol) at 0 °C was added p-toluenesulfonylchloride (3.12 g, 16.4 mmol). After the reaction mixture was stirred at 25 °C for 1.5 h, the reaction was guenched with water (30 mL) and the resultant mixture was then extracted with ethyl acetate (50 mL \times 3). The extracts were washed with saturated aqueous NaCl (30 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO₂, 12% EtOAc in hexane as eluent) gave tosyl compound 9 (7 g, 96%) as a colorless viscous liquid, $R_f=0.72$ (1:1 EtOAc and hexane). $[\alpha]_D^{25} + 35.6$ (c 1.8, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 0.68 (d, 3H, J= 6.8 Hz, CH₃), 0.83 (d, 3H, J=6.8 Hz, CH₃), 1.05 (d, 3H, J= 6.8 Hz, CH₃), 1.31 (d, 6H, J=6.8 Hz, 2×CH₃), 1.74–1.88 (m, 2H, $2 \times CH$), 2.12–2.24 (m, 1H, CH), 2.45 (s, 3H, ArCH₃), 3.33 (dd, 1H, J=1.5, 9.8 Hz, CH), 3.42 (t, 1H, J=11.3 Hz, CH), 3.62 (dd, 1H, J=5.3, 11.3 Hz, CH), 3.74 (dd, 1H, J=1.5, 10.6 Hz, CH), 3.87 (dd, 1H, J=7.5, 9.8 Hz, CH), 4.23 (dd, 1H, J=5.3, 9.8 Hz, CH), 4.55 (s, 2H, benzylic CH₂), 7.14-7.32 (m, 7H, ArH), 7.77 (d, 2H, J=8.3 Hz, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 144.2, 138.5, 132.9, 129.4, 127.9, 127.5, 126.9, 126.4, 97.6, 82.5, 74.6, 72.9, 71.6, 65.7, 36.7, 35.1, 29.9, 29.5, 21.1, 19.1, 15.8, 12.0, 9.3; IR (neat): 2972, 2852, 1626, 1359, 1174 cm⁻¹; ESIMS: 513.1 [M+Na]⁺; HRMS (ESIMS) m/z calcd for C₂₇H₃₈O₄SNa [M+Na]⁺ 513.2286, found 513.2287.

4.1.3. (4S,5S)-4-[(1S,2S,3S)-2-(Benzyloxy)-1,3-dimethyl-5hexynyl]-2,2,5-trimethyl-1,3-dioxane

To a stirred solution of 9 (4 g, 8.16 mmol) in dry dimethyl sulfoxide (34.5 mL) was added lithium acetylide ethylenediamine complex (90%, 4.18 g, 40.8 mmol) at 0 °C in one portion. After the reaction mixture was stirred at 25 °C for 1.5 h, the reaction was quenched with saturated aqueous NH₄Cl (30 mL) under ice cooling, and the resultant mixture was then extracted with ether (25 mL \times 3). The extracts were washed with saturated aqueous NaCl (30 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO₂, 8% EtOAc in hexane as eluent) gave alkyne compound (2.25 g, 80%) as a color oil, $R_f=0.80$ (1:1 EtOAc and hexane). $[\alpha]_D^{25}$ +22.67 (*c* 1.0, CHCl₃); ¹H NMR $(CDCl_3, 300 \text{ MHz}): \delta 0.70 \text{ (d}, 3H, J=6.8 \text{ Hz}, CH_3), 0.88 \text{ (d}, 3H,$ J=7.5 Hz, CH₃), 1.20 (d, 3H, J=6.8 Hz, CH₃), 1.32 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 2.02 (m, 1H, CH), 1.75–1.92 (m, 3H, CH and CH₂), 2.13 (td, 1H, J=2.3, 9.8 Hz, CH), 2.32 (dt, 1H, J=3.0, 6.0 Hz, CH), 3.33 (dd, 1H, J=1.5, 9.1 Hz, CH), 3.44 (t, 1H, J=11.3 Hz, CH), 3.63 (dd, 1H, J=4.5, 11.3 Hz, CH), 3.82 (dd, 1H, J=1.5, 10.6 Hz, CH), 4.61 (ABq, 2H, J=11.3, 15.9 Hz, benzylic CH₂), 7.19–7.35 (m, 5H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 139.2, 128.2, 127.2, 126.6, 97.9, 96.2, 83.3, 75.0, 73.4, 69.0, 66.1, 36.9, 35.4, 30.4, 30.0, 19.6, 19.3, 18.6, 12.6, 9.9; IR (neat): 2924, 2854, 1641, 1364, 1007, 995 cm⁻¹; FABMS: 345 $[M+H]^+$; HRMS (ESIMS): m/z calcd for $C_{22}H_{32}O_{3}Na [M+Na]^{+} 367.2249$, found 367.2249.

4.1.4. (2S,3S,4R,5S,6S)-5-(Benzyloxy)-2,4,6-trimethyl-8nonyne-1,3-diol (**10**)

To a stirred solution of acetonide (2.2 g, 6.4 mmol) in MeOH (10 mL) at 0 °C was added pyridinium p-toluenesulfonate (1.6 g, 6.4 mmol). After the reaction mixture was stirred at 25 °C for 3 h, the reaction was quenched with saturated aqueous NaHCO₃ (20 mL) under ice cooling, and the resultant mixture was then extracted with ether $(30 \text{ mL} \times 3)$. The extracts were washed with saturated aqueous NaCl (12 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO₂, 50% EtOAc in hexane as eluent) gave **10** (1.71 g, 84%) as colorless oil, R_f =0.35 (1:1 EtOAc and hexane). [α]_D³⁰ -22.58 (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 0.75 (d, 3H, J=6.8 Hz, CH₃), 1.03 (d, 3H, J=6.8 Hz, CH₃), 1.19 (d, 3H, J=6.8 Hz, CH₃), 1.50 (br s, OH), 1.71 (s, 3H, CH₃), 1.74-1.96 (m, 2H, CH₂), 2.00 (t, 1H, J=3.0 Hz, acetylene), 2.07–2.33 (m, 1H, CH), 2.36 (dt, 1H, J=3.0, 6.0, 16.6 Hz, CH), 2.54 (ddd, 1H, J=3.0, 6.0, 16.6 Hz, CH), 3.38-3.65 (m, 1H, CH), 3.76-3.99 (m, 2H, CH₂), 4.71 (s, 2H, benzylic CH₂), 7.32 (m, 5H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 137.6, 128.5, 128.0, 127.7, 88.8, 82.3, 76.7, 76.5, 70.5, 68.9, 37.3, 34.9, 34.8, 22.4, 16.2, 13.2, 11.6; IR (KBr): 3413, 3345, 2927, 2865, 1644, 1239, 995 cm⁻¹; FABMS 305 $[M+H]^+$; HRMS (ESIMS) m/z calcd for $C_{19}H_{28}O_3Na$ [M+Na]⁺ 327.1936, found 327.1940.

4.1.5. (2R,3R,4R,5S,6S)-5-(Benzyloxy)-3-hydroxy-2,4,6trimethyl-8-nonynal (11)

To a stirred solution of IBX (2.07 g, 7.4 mmol) in 4 mL dry DMSO was added diol 10 (1.5 g, 4.93 mmol) in 15 mL dry CH₂Cl₂ at 0 °C. The resulting reaction mixture stirred at 25 °C for 3 h. Solid was filtered and washed with diethyl ether. The filtrate was extracted with ether, washed with water and brine, and dried over anhydrous Na₂SO₄, the ether layer was concentrated under reduced pressure and the crude product was subjected to column chromatography (SiO₂, 15% EtOAc in hexane as eluent) to give aldehyde 11 (1.01 g, 62%) as a colorless liquid, R_f =0.58 (1:1 EtOAc and hexane). ¹H NMR (CDCl₃, 200 MHz): δ 0.73 (d, 3H, J=6.8 Hz, CH₃), 1.04 (d, 3H, J= 6.8 Hz, CH₃), 1.17 (d, 3H, J=7.2 Hz, CH₃), 1.56 (br s, OH), 1.79-1.06 (m, 3H, CH₂ and CH), 1.96 (t, 1H, J=3.0 Hz, acetylene), 2.56 (m, 1H, CH), 2.59 (dd, 1H, J=5.9, 15.4 Hz, CH), 3.44 (m, 1H, CH), 3.91 (dd, 1H, J=3.4, 5.9 Hz, CH), 4.68 (s, 2H, benzylic CH₂), 7.32 (m, 5H, ArH), 9.77 (s, 1H, CHO); IR (neat): 3453, 2928, 2846, 1698, 1641, 995 cm^{-1} ; LC-MS: 325.1 $[M+Na]^+$; HRMS (ESIMS): m/z calcd for $C_{19}H_{26}O_3Na$ [M+Na]⁺ 325.1779, found 325.1608.

4.1.6. (E,4R,5S,6S)-5-(Benzyloxy)-2,4,6-trimethyl-2-nonen-8-ynal (12)

To an ice-cold solution of **11** (1 g, 3.3 mmol) in dry CH_2Cl_2 (11.2 mL) and triethylamine (1.4 mL, 6.82 mmol) was added dropwise acetic anhydride (0.37 mL, 3.97 mmol) and catalytic amount of DMAP with stirring. After the reaction mixture was stirred at 25 °C for 14 h, the mixture was poured into ice-cooled water (13 mL) and the resultant mixture was then extracted with ether (3×10 mL). The extracts were washed with saturated

aqueous NaCl (13 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO₂, 13% EtOAc in hexane as eluent) gave 12 (0.8 g, 85%) as a colorless oil, $R_f=0.62$ (1:1 EtOAc and hexane). $[\alpha]_{D}^{30} - 41.24 (c \, 1.0, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} (\text{CDCl}_3, 200 \text{ MHz}):$ δ 0.99 (d, 3H, J=7.0 Hz, CH₃), 1.09 (d, 3H, J=7.0 Hz, CH₃), 1.76 (s, 3H, CH₃), 1.95 (t, 1H, J=2.3 Hz, acetylene), 2.28 (dt, 1H, J=3.1, 7.0, 17.1 Hz, CH), 2.44 (ddd, 1H, J=2.3, 6.2, 17.1 Hz, CH), 3.01 (tt, 1H, J=3.1, 7.0 Hz, CH), 3.38 (dd, 1H, J= 3.1, 7.0 Hz, CH), 4.54 (ABq, 2H, J=11.7, 23.3 Hz, benzylic CH₂), 6.59 (d, 1H, J=10.1 Hz, olefin), 7.32 (m, 5H, ArH), 9.38 (s, 1H, CHO); ¹³C NMR (CDCl₃, 75 MHz): δ 195.7, 155.7, 146.2, 138.7, 128.4, 128.3, 127.7, 127.5, 85.5, 82.5, 75.5, 70.2, 36.3, 22.2, 17.6, 16.1, 9.3; IR (neat): 2954, 2861, 1685, 1641, 989 cm⁻¹; HRMS (ESIMS): m/z calcd for C₁₉H₂₄O₂ [M]⁺ 284.3971, found 284.3968.

4.1.7. (E,4R,5S,6S)-5-(Benzyloxy)-2,4,6-trimethyl-2-nonen-8-yn-1-ol (13)

Sodiumborohydride (180 mg, 5.3 mmol) was added portion wise to the stirred cold solution of unsaturated aldehyde 12 (1 g, 3.5 mmol) in 5 mL MeOH. After the reaction mixture was stirred at 25 °C for 1 h, MeOH was evaporated and the resulted residue was quenched with water and extracted with ethyl acetate (3×10 mL), combined extracts were washed with brine solution, dried over anhydrous Na2SO4, and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO₂, 40% EtOAc in hexane as eluent) gave **13** (0.925 g, 92%) as colorless viscous liquid, $R_f=0.50$ (1:1 EtOAc and hexane). $[\alpha]_{D}^{30}$ –14.21 (c 0.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 1.01 (d, 3H, J=7.0 Hz), 1.09 (d, 3H, J=7.0 Hz, CH₃), 1.27 (q, 1H, J=7.8, 9.3 Hz, CH), 1.42 (br s, OH), 1.68 (s, 3H, CH₃), 1.81 (m, 1H, CH), 1.92 (t, 1H, J=2.3 Hz, acetylene), 2.34 (m, 1H, CH), 2.72 (m, 1H, CH), 3.22 (dd, 1H, J=3.9, 8.6 Hz, CH), 3.97 (s, 2H, CH₂), 4.64 (q, 2H, J=10.9, 13.3 Hz, benzylic CH₂), 5.49 (d, 1H, J=9.4 Hz, olefin), 7.30 (m, 5H, ArH); ¹³C NMR (CDCl₃, 75 MHz): *b* 138.8, 134.6, 128.3, 127.6, 127.5, 86.6, 83.3, 75.4, 69.7, 69.0, 35.8, 34.9, 22.0, 18.7, 16.4, 13.8; IR (neat): 3423, 2927, 2859, 1639, 995 cm⁻¹; FABMS: 269 (M-18); HRMS (ESIMS): m/z calcd for $C_{19}H_{26}O_2Na$ [M+Na]⁺ 309.3983, found 309.3667.

4.1.8. (E,4R,5S,6S)-2,4,6-Trimethyl-2-nonen-8-yne-1,5-diol (14)

Lithium metal (51 mg, 7.3 mmol) was added to a stirred solution of freshly distilled ammonia (10 mL) and compound **13** (0.7 g, 2.4 mmol) in dry THF (5 mL) in a 100 mL two neck round bottom flask fitted with a cold finger condenser at -33 °C. The reaction mixture was then stirred for another 2 min at -33 °C and quenched by the addition of solid ammonium chloride and the ammonia was then allowed to evaporate. The residue left was partitioned between water and ether and the aqueous phase extracted with ether (3×30 mL). The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (SiO₂, 60% EtOAc in hexane as eluent) to afford the pure **14** (0.422 mg, 88%) as a clear colorless liquid, R_f =0.30. $[\alpha]_D^{25}$ +5.73 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 1.01 (d, 3H, *J*=6.6 Hz, CH₃), 1.02 (d, 3H, *J*=7.3 Hz, CH₃), 1.41 (br s, 1H, OH), 1.69 (s, 3H, CH₃), 1.67–1.69 (m, 2H, CH₂), 1.88 (t, 1H, *J*=2.2 Hz, acetylene), 2.21–2.37 (m, 2H, 2×CH), 2.62 (m, 2H, 2×CH), 3.27 (t, 1H, *J*=5.9 Hz, CH), 4.00 (s, 2H, CH₂), 5.37 (d, 1H, *J*=9.5 Hz, olefin); ¹³C NMR (CDCl₃, 75 MHz): δ 135.8, 126.2, 83.5, 78.7, 69.3, 68.2, 35.2, 34.8, 20.9, 18.0, 16.6, 14.0; IR (neat): 3403, 3350, 2924, 2854, 1641, 995 cm⁻¹; LC–MS: 219.1 [M+Na]⁺; HRMS (ESIMS): *m/z* calcd for C₁₂H₂₀O₂Na [M+Na]⁺ 219.1360, found 219.1365.

4.1.9. (*E*,4*R*,5*S*,6*S*)-5-Hydroxy-2,4,6-trimethyl-2-nonen-8ynyl pivalate (**15**)

To an ice-cold solution of 14 (0.4 g, 2.04 mmol) in dry CH₂Cl₂ (11.2 mL) were added dropwise triethylamine (0.85 mL, 6.12 mmol) and pivaloyl chloride (0.38 mL, 3.06 mmol) with stirring. After the reaction mixture was stirred at 25 °C for 4 h, the mixture was poured into ice-cooled water (13 mL), and the resultant mixture was then extracted with ether (10 mL \times 3). The extracts were washed with saturated aqueous NaCl (13 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO₂, 25% EtOAc in hexane as eluent) gave 15 (0.53 g, 94%) as a colorless viscous liquid, $R_f=0.65$ (1:2 EtOAc and hexane). $[\alpha]_{D}^{25}$ +10.90 (c 1.25, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 1.02 (d, 6H, J=6.2 Hz, 2×CH₃), 1.21 (S, 9H, tert-butyl), 1.68 (s, 3H, CH₃), 1.69–1.79 (m, 2H, CH₂), 1.88 (t, 1H, J=2.3 Hz, acetylene), 2.20-2.37 (m, 2H, 2×CH), 2.61 (m, 1H, CH), 3.27 (dd, 1H, J=5.5, 7.0 Hz, CH), 3.38 (br s, OH), 4.45 (ABq, 2H, J=12.5, 23.4 Hz, CH₂), 5.41 (d, 1H, J=8.6 Hz, olefin); ¹³C NMR (CDCl₃, 75 MHz): δ 184.7, 131.7, 129.6, 83.4, 78.5, 69.8, 69.3, 38.8, 35.3, 35.2, 26.9, 20.9, 17.6, 16.7, 14.1; IR (neat): 3504, 3308, 2967, 1725, 1284, 992 cm⁻¹; LC-MS: 303 $[M+Na]^+$ 321 $[M+K]^+$; HRMS (ESIMS): m/z calcd for $C_{19}H_{24}O_2Na [M+Na]^+ 280.4051$, found 280.4047.

4.1.10. (E,4R,5S,6S)-5-[(1,1-Diethyl-1-isopropylsilyl)oxy]-2,4,6-trimethyl-2-nonen-8-ynyl pivalate

To a stirred solution of 15 (0.5 g, 1.78 mmol) in dry DMF (2 mL) and imidazole (730 mg, 10.7 mmol) was added dropwise diethylisopropylsilylchloride (0.58 mL, 3.57 mmol) at 0 °C. After the reaction mixture was stirred at 25 °C for 12 h, the mixture was poured into ice-cooled water (9 mL), and the resultant mixture was then extracted with ether (7 mL \times 3). The extracts were washed with saturated aqueous NaCl (10 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO2, 8% EtOAc in hexane as eluent) gave protected compound (0.69 g, 85%) as a colorless liquid, $R_t=0.55$ (1:4 EtOAc and hexane). $[\alpha]_{D}^{30} - 0.20 (c 1.3, CHCl_3); {}^{1}H NMR (CDCl_3, 300 MHz): \delta 0.63$ -0.72 (m, 4H, 2×CH₂), 0.94-1.08 (m, 21H, 7×CH₃), 1.23 (s, 3H, CH₃), 1.73–1.86 (m, 1H, CH), 1.89 (t, 1H, J=2.3 Hz, acetylene), 2.13 (ddd, 1H, J=3.0, 8.3 Hz, CH), 2.28 (ddd, 1H, J=2.3, 5.3 Hz, CH), 2.61 (m, 1H, CH), 3.61 (dd, 1H, J=3.0, 5.3 Hz, CH), 4.44 (s, 2H, CH₂), 5.56 (d, 1H, J=9.8 Hz, olefin); ¹³C NMR (CDCl₃, 75 MHz): δ 178.2, 130.6, 129.1, 83.7, 79.2, 69.7, 69.2, 38.8, 37.5, 35.7, 27.2, 21.9, 18.5, 17.7, 17.6, 16.4, 14.0, 13.5, 7.4, 7.3, 4.5; IR (neat): 3448, 2960, 1731, 1459, 1033 cm⁻¹; LC-MS: 431.2 [M+Na]⁺; HRMS (ESIMS): m/z calcd for C₂₄H₄₄O₃SiNa [M+Na]⁺ 431.2957, found 431.2952.

4.1.11. (E,4R,5S,6S)-5-[(1,1-Diethyl-1-isopropylsilyl)oxy]-2,4,6-trimethyl-2-nonen-8-yn-1-ol

To the solution of pivalate (0.7 g, 1.71 mmol) in 4 mL MeOH was added K₂CO₃ (171 mg, 1.71 mmol). The reaction mixture was stirred at room temperature for overnight. The resultant mixture was filtered and washed with MeOH. The combined filtrate and washings were concentrated in vacuo. Purification of the residue by column chromatography (SiO2, 25% EtOAc in hexane as eluent) gave free alcohol 16 (0.47 g, 85%) as a colorless liquid, $R_{f}=0.68$ (1:1 EtOAc and hexane). $[\alpha]_{D}^{30} + 3.68$ (c 1.9, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 0.63–0.73 (m, 4H, 2×CH₂), 0.92-1.09 (m, 18H, 6×CH₃), 1.25 (br s, OH), 1.67 (s, 3H, CH₃), 1.71–1.82 (m, 1H, CH), 2.10 (t, 1H, J=2.5 Hz, acetylene), 2.22-2.34 (m, 1H, CH), 2.58 (m, 1H, CH), 3.56 (dd, 1H, J=3.4, 5.8 Hz, CH), 3.96 (s, 2H, CH₂), 5.47 (d, 1H, J=9.4 Hz, olefin); ¹³C NMR (CDCl₃, 75 MHz): δ 133.8, 128.6, 83.7, 79.4, 69.2, 69.1, 37.4, 35.7, 22.0, 18.6, 17.6, 16.6, 13.8, 13.5, 7.4, 4.5; IR (KBr): 3441, 2945, 2878, 1452, 1248, 723 cm⁻¹; LC–MS: 347 [M+Na]⁺; HRMS (ESIMS): *m/z* calcd for C₁₉H₃₆O₂SiNa [M+Na]⁺ 347.2382, found 347.2376.

4.1.12. (2E,4R,5S,6S,8E)-5-[(1,1-Diethyl-1isopropylsilyl)oxy]-9-iodo-2,4,6,8-tetramethyl-2,8nonadien-1-ol (17)

To a stirred solution of Cp₂ZrCl₂ (0.9 g, 3.08 mmol) in dry 1,2-dichloroethane (10 mL) was added dropwise 2 M Me₃Al/ *n*-hexane (2.31 mL, 4.62 mmol). After 0.5 h at 25 °C, a solution of 16 (0.5 g, 1.54 mmol) in dry 1,2-dichloroethane (2 mL) was added to the reaction mixture. After 13 h, to the reaction mixture at -30 °C was added slowly a solution of I₂ (3.92 g, 15.4 mmol) in dry THF (18 mL), and the resultant mixture was stirred at -30 °C for 1.5 h. The reaction mixture was warmed to 0 °C, and ice-cooled saturated aqueous K₂CO₃ (40 mL) was added. The resultant mixture was extracted with ether $(3 \times 30 \text{ mL})$. The extracts were washed with saturated aqueous Na₂S₂O₃ (2×30 mL) and saturated aqueous NaCl (30 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO₂, 12% EtOAc in hexane as eluent) gave vinyliodo 17 (0.59 g, 82%) as a pale yellow viscous liquid, $R_f=0.52$ (3:7 EtOAc and hexane). $[\alpha]_D^{30}$ -8.82 (c 1.5, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 0.65 (q, 4H, J=7.4, 14.8 Hz, 2×CH₂), 0.78 (d, 3H, J=6.7 Hz, CH₃), 0.92-1.09 (m, 17H, 5×CH₃ and CH₂), 1.26 (m, 1H, CH), 1.67 (s, 3H, CH₃), 1.80 (s, 3H, CH₃), 1.97 (m, 1H, CH), 2.42 (dd, 1H, J=3.7, 13.3 Hz, CH), 2.58 (m, 1H, CH), 3.43 (t, 1H, J=4.5 Hz, CH), 3.97 (s, 2H, CH₂), 5.48 (d, 1H, J=8.9 Hz, olefin), 5.83 (s, 1H, olefin); ¹³C NMR (CDCl₃, 75 MHz): δ 147.0, 133.4, 129.1, 80.4, 75.1, 69.2, 42.9, 35.9, 35.6, 23.6, 18.9, 17.6, 16.1, 13.8, 13.5, 7.3, 4.5; IR (neat): 3437, 2958, 1453, 1248, 1097, 724 cm⁻¹; ESIMS: 489.1 [M+Na]⁺; HRMS (ESIMS): m/z calcd for C₂₀H₃₉O₂SiINa [M+Na]⁺ 489.1661, found 489.1657.

4.1.13. (2E,4R,5S,6S,8E)-5-[(1,1-Diethyl-1isopropylsilyl)oxy]-9-iodo-2,4,6,8-tetramethyl-2,8nonadienal (18)

To a solution of 17 (0.5 g, 1.07 mmol) in dry CH₂Cl₂(15 mL) was added MnO₂ (2.82 g, 32.1 mmol). After the reaction mixture was stirred at 25 °C for 2 h, the mixture was filtered through Celite, and the filtered cake was washed with CH₂Cl₂. The filtrate and washings were combined and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO₂, 10% EtOAc in hexane as eluent) gave **18** (0.48 g, 96%) as a colorless gummy liquid, $R_f=0.45$ (3:7 EtOAc and hexane). $[\alpha]_{D}^{30} - 1.17 (c \, 1.5, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} (\text{CDCl}_3, 300 \text{ MHz}): \delta \, 0.67$ (q, 4H, J=7.5, 15.9 Hz, 2×CH₂), 0.76 (d, 3H, J=6.8 Hz, CH₃), 0.92-1.12 (m, 16H, 5×CH₃ and CH), 1.26 (m, 1H, CH), 1.75 (s, 3H, CH₃), 1.80 (s, 3H, CH₃), 1.98 (dd, 1H, J=9.8, 12.8 Hz, CH), 2.36 (dd, 1H, J=3.8, 12.8 Hz, CH), 2.86 (tt, 1H, J=2.3, 6.8 Hz, CH), 3.57 (m, 1H, CH), 5.86 (s, 1H, olefin), 6.65 (d, 1H, J=9.1 Hz, olefin), 9.38 (s, 1H, CHO); IR (neat): 2956, 2878, 1694, 1460, 1284, 1094, 720 cm⁻¹; ESIMS: 487.1 [M+Na]⁺; HRMS (ESIMS): m/z calcd for C₂₀H₃₇O₂SiINa [M+Na]⁺ 487.1505, found 487.1487.

4.1.14. Methyl(2Z,4E,6R,7S,8S,10E)-7-[(1,1-diethyl-1isopropylsilyl)oxy]-11-iodo-2-methoxy-4,6,8,10tetramethyl-2,4,10-undecatrienoate (**4**)

To a stirred solution of methyl methoxy acetate (217 mg. 2.15 mmol) in THF (3 mL) at -78 °C was added LiHMDS (1 M in THF 1.3 mL, 1.29 mmol). The mixture was stirred at -78 °C for 0.5 h before a solution of the **18** (200 mg, 0.43 mmol) in THF (2 mL) was added. The mixture was then stirred at -78 °C for 2 h, after which TLC indicated no aldehyde remained. The mixture was quenched with dilute aqueous ammonium chloride solution and extracted with ether (3×15 mL). The combined ether extracts were dried over Na₂SO₄ and concentrated in vacuo. Column chromatography of the residue afforded the γ -hydroxy ester (223 mg, 94%). The mixture was used for the next step.

To solution of the γ -hydroxy ester (200 mg, 0.36 mmol) in dry CH₂Cl₂ (4 mL) were added MsCl (82.5 mg, 0.72 mmol) and triethylamine (109 mg, 1.08 mmol). The mixture was stirred at room temperature for 3 h before DBU (109 mg, 0.72 mmol) was added. The mixture was stirred for another 2 h and then quenched with aqueous ammonium chloride solution. The mixture was extracted with diethyl ether $(3 \times 15 \text{ mL})$. The combined extracts were dried over Na₂SO₄ and concentrated in vacuo. Column chromatography (SiO₂, 20% EtOAc in hexane as eluent) of the residue afforded the γ -hydroxy ester 4 (184 mg, 80%) as a pale yellow viscous liquid, $R_f=0.60$ (3:7 EtOAc and hexane). $[\alpha]_D^{30}$ +21.67 (c 1.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 0.64 (q, 4H, *J*=7.6, 15.8 Hz, 2×CH₂), 0.76 (d, 3H, J=6.8 Hz, CH₃), 0.94–1.08 (m, 16H, 5×CH₃ and CH), 1.65–1.82 (m, 2H, CH₂), 1.79 (s, 3H, CH₃), 1.96 (s, 3H, CH₃), 2.41 (dd, 1H, J=3.8, 12.8 Hz, CH), 2.68 (m, 1H, CH), 3.46 (m, 1H, CH), 3.65 (s, 3H, OCH₃), 3.79 (s, 3H, CO₂CH₃), 5.83 (s, 1H, olefin), 5.90 (d, 1H, J=9.1 Hz, olefin), 6.51 (s, 1H, olefin); ¹³C NMR (CDCl₃, 75 MHz): δ 165.5, 146.8, 142.8, 141.7, 130.0, 129.9, 80.2, 75.3, 60.2, 51.9, 43.2, 36.5, 36.0, 23.6, 18.6, 17.6, 15.7, 14.8, 13.5, 7.4, 7.3, 4.5, 4.4; IR (neat): 3435, 2955, 1721, 1452, 1248, 720 cm⁻¹; LC–MS: 573.1 [M+Na]⁺; HRMS (ESIMS): m/z calcd for C₂₄H₄₃O₄SiINa [M+Na]⁺ 573.1873, found 573.1871.

4.1.15. (4R)-4-Benzyl-3-((2R,3S,4E)-6-[1-(tert-butyl)-1,1diphenylsilyl]oxy-3-hydroxy-2-methyl-4-hexenoyl)-1,3oxazolan-2-one (20)

Di-n-butylboryltrifluoromethanesulfonate (17 mL, 1 M in CH₂Cl₂, 16.97 mmol) was added to a solution of (S)-4-benzyl-3-propionyloxazolidin-2-one 19 (3.96 g, 15.4 mmol) in 35 mL of CH₂Cl₂ at such a rate as to maintain the internal temperature below +3 °C. Triethylamine (2.7 mL, 18.5 mmol) was then added dropwise (internal temperature below +4 °C). The resulting yellow solution was then cooled to -78 °C and aldehyde 7 (5 g, 15.4 mmol) in 15 mL CH₂Cl₂ was added slowly (internal temperature below -70 °C). After 20 min, the solution was warmed to 0 °C and stirred at that temperature for 1 h. The reaction was quenched by the addition of 15 mL aqueous phosphate buffer solution of pH 7.0 and 50 mL of MeOH (internal temperature below +10 °C). A solution of 30 mL of MeOH and 15 mL of 30% aqueous H₂O₂ was added carefully (internal temperature below +10 °C), and the resulting yellow solution was stirred at 0 °C for 1 h. The reaction mixture was extracted with CH₂Cl₂ and the combined organic extracts were washed with 50 mL of saturated aqueous NaHCO₃ and 50 mL of saturated brine. The organic solution was dried over anhydrous Na₂SO₄ and purified by flash column chromatography (SiO₂, 50% EtOAc in hexane as eluent) to give syn-aldol adduct 20 as a colorless oil (7.6 g, 89%, >95:5 diastereoselectively), $R_f=0.42$ (1:1 EtOAc and hexane). $[\alpha]_D^{25} - 33.61$ (c 2.4, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 1.06 (s, 9H, tert-butyl), 1.22 (d, 3H, J=6.8 Hz, CH₃), 2.73 (dd, 1H, J=9.8, 13.6 Hz, PhCH), 3.27 (dd, 1H, J=3.0, 13.6 Hz, PhCH), 3.80 (m, 1H, CH), 4.13 (d, 2H, J=5.3 Hz, CH₂), 4.22 (d, 2H, J=3.8 Hz, CH₂), 4.47 (t, 1H, J=3.8 Hz, CH), 4.62 (m, 1H, CH), 5.72 (dd, 1H, J=5.3, 15.1 Hz, olefin), 5.85 (dt, 1H, J=3.8, 15.8 Hz, olefin), 7.15-7.43 (m, 11H, ArH), 7.64 (m, 4H, ArH); ¹³C NMR (CDCl₃, 50 MHz): δ 176.6, 153.0, 135.4, 134.9, 133.5, 131.1, 129.6, 129.3, 129.0, 128.7, 127.6, 127.3, 71.9, 66.1, 63.6, 55.1, 42.7, 37.7, 26.7, 19.1, 11.0; IR (neat): 3449, 2931, 2856, 1780, 1696, 1384, 1029 cm⁻¹; LC-MS: 580.2 [M+Na]⁺; HRMS (ESIMS): m/z calcd for C₃₃H₃₉O₅SiNa [M+Na]⁺ 580.2495, found 580.2498.

4.1.16. (2*S*,3*S*,4*E*)-6-[1-(tert-Butyl)-1,1-diphenylsilyl]oxy-2methyl-4-hexene-1,3-diol

To a stirred solution of **20** (7 g, 12.56 mmol) in Et₂O (50 mL) at 0 °C, LiBH₄ (0.414 g, 5.5 mmol) was added in one portion. After the addition was complete, the reaction was allowed to stir for 1 h at 0 °C. After reaction was completed, the reaction mixture was quenched with ice-cold water and extracted with ethyl acetate (3×30 mL). The combined organic layers was dried over anhydrous Na₂SO₄ and concentrated in vacuo. Purification by column chromatography (SiO₂, 70% EtOAc in hexane as eluent) yielded diol (4.73 g, 98%) as colorless oil, R_f =0.20 (1:1 EtOAc and hexane). [α]_D²⁵ -0.58 (*c* 1.6, CHCl₃);

¹H NMR (CDCl₃, 200 MHz): δ 0.86 (d, 3H, *J*=7.3 Hz, CH₃), 1.07 (s, 9H, *tert*-butyl) 1.92 (m, 1H, CH) 3.63 (m, 2H, CH₂), 3.64 (d, 1H *J*=1.5 Hz, CH), 4.18–4.33 (m, 3H, CH₂ and CH), 5.79 (m, 2H, olefinic), 7.28–7.43 (m, 6H, ArH), 7.58–7.70 (m, 4H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 135.5, 133.7, 130.7, 130.0, 129.7, 127.7, 75.3, 66.2, 63.9, 39.9, 26.8, 19.2, 11.3; IR (neat): 3412, 3069, 2856, 1638, 1029, 701 cm⁻¹; LC–MS: 407.1 [M+Na]⁺; HRMS (ESIMS): *m*/*z* calcd for C₂₃H₃₂O₃SiNa [M+Na]⁺ 407.2018, found 407.2020.

4.1.17. tert-Butyl(diphenyl)((E)-3-[(4S,5S)-2,2,5-trimethyl-1,3-dioxan-4-yl]-2-propenyloxy)silane (21)

To a solution of diol (3 g, 7.8 mmol) in dry CH₂Cl₂ (40 mL), 2,2-dimethoxy propane (12 mL) and PPTS (1 g) was added. The mixture was stirred at ambient temperature for 3 h. Sodium bicarbonate was added to neutralize PPTS and filtered. Removal of solvent and purification by silica gel column chromatography (SiO₂, 20% EtOAc in hexane as eluent) afforded the mono acetonide **21** (3.18 g, 96%) as a colorless liquid, $R_f=0.55$ (1:2 EtOAc and hexane). $[\alpha]_D^{25}$ +13.99 (c 1, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 1.05 (d, 3H, J=7.3 Hz, CH₃), 1.07 (s, 9H, tert-butyl), 1.41 (s, 3H, CH₃), 1.47 (s, 3H, CH₃), 3.59 (dd, 1H, J=1.5, 11.0 Hz, CH), 4.12 (dd, 1H, J=2.9, 11.8 Hz, CH), 4.21 (d, 2H, J=2.2 Hz, CH₂), 4.52 (t, 1H, J=2.2 Hz, CH), 5.71 (m, 2H, olefin), 7.29-7.44 (m, 6H, ArH), 7.61-7.72 (m, 4H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 135.5, 133.7, 130.0, 129.6, 128.9, 127.6, 98.7, 71.9, 66.4, 63.9, 33.0, 29.7, 26.8, 19.3, 19.2, 11.1; IR (neat): 3443, 2933, 2859, 1634, 1377, 705 cm⁻¹; LC-MS: 447.1 [M+Na]⁺; HRMS (ESIMS): m/zcalcd for C₂₆H₃₆O₃SiNa [M+Na]⁺ 447.2331, found 447.2330.

4.1.18. (E)-3-[(4S,5S)-2,2,5-Trimethyl-1,3-dioxan-4-yl]-2propen-1-ol

To a stirred solution of 21 compound (3 g, 7.0 mmol) in THF (15 mL) and was added TBAF (8.5 mL (1 M in THF), 8.5 mmol) at 0 °C. The reaction mixture was stirred for 1 h at room temperature and the reaction mixture was concentrated in vacuo. The crude product was purified by column chromatography (SiO₂, 40% EtOAc in hexane as eluent) on silica gel to give the allyl alcohol (1.25 g, 95%) as a colorless liquid, $R_f = 0.55$ (1:1 EtOAc and hexane). $[\alpha]_D^{25} + 10.25$ (c 1.1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 1.05 (d, 3H, J= 6.6 Hz, CH₃), 1.41 (d, 6H, J=10.7 Hz, $2\times$ CH₃), 3.56 (d, 2H, J=11.6 Hz, CH₂), 4.13 (d, 2H, J=4.1 Hz, CH₂), 4.07 (d, 1H, J=2.5 Hz, CH), 4.44–4.55 (m, 1H, CH), 5.61 (dd, 1H, J=5.0, 15.7 Hz, olefin), 5.83 (dt, 1H, J=5.0, 15.7 Hz, olefin); ¹³C NMR (CDCl₃, 75 MHz): δ 130.5, 130.4, 98.7, 71.8, 66.3, 32.8, 30.8, 29.6, 19.1, 11.0; IR (neat): 3443, 2933, 2859, 1634, 1377, 705 cm⁻¹; LC-MS: 209.1 [M+Na]⁺; HRMS (ESIMS): m/zcalcd for $C_{10}H_{18}O_3Na [M+Na]^+ 209.1153$, found 209.1145.

4.1.19. (2R,3S)-3-[(4R,5S)-2,2,5-Trimethyl-1,3-dioxan-4yl]oxiran-2-ylmethanol (22)

Dry CH₂Cl₂ of 10 mL was added to 4Å activated molecular sieves powder and the suspension mixture was cooled to -20 °C. D-(+) DET (0.302 g, 1.3 mmol) in dry DCM (2 mL) and Ti(OⁱPr)₄ (0.4 mL, 1.3 mmol) were added subsequently

with stirring and the resulting mixture was stirred for 30 min at -20 °C, allyl alcohol (1.2 g, 6.5 mmol) in dry CH₂Cl₂ (5 mL) was added and the resulting mixture was stirred for another 30 min at -20 °C. TBHP (3.3 M in toluene, 6 mL, 19.4 mmol) was then added and the reaction mixture was stirred at the same temperature for 24 h. It was then warmed to 0 °C, quenched with 2 mL of water and stirred for 1 h at room temperature. Aqueous NaOH solution (30%) saturated with NaCl (6 mL) was then added and the reaction mixture was stirred vigorously for another 30 min at room temperature. The resulting mixture was washed well with CH₂Cl₂. The organic phase was separated and the aqueous phase was extracted with CH₂Cl₂. Combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and purified by silica gel column chromatography (SiO₂, 60% EtOAc in hexane as eluent) to afford compound 22 (1.0 g, 78%) as a colorless viscous liquid, $R_{f}=0.55$ (1:1 EtOAc and hexane). $[\alpha]_{D}^{25}$ -18.45 (c 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 1.17 (d, 3H, J=6.8 Hz, CH₃), 1.36 (s, 3H, CH₃), 1.40 (s, 3H, CH₃), 1.60–1.71 (m, 1H, CH), 2.14-2.43 (br s, OH), 2.92 (dd, 1H, J=2.3, 5.3 Hz, CH), 3.12-3.17 (m, 1H, CH), 3.56 (dd, 1H, J=1.5, 11.3 Hz), 3.62 (dd, 1H, J=4.5, 12.8 Hz, CH), 3.84-3.93 (m, 2H, CH₂), 4.07 (dd, 1H, J=3.0, 11.3 Hz, CH); ¹³C NMR (CDCl₃, 75 MHz): δ 98.8, 70.0, 66.1, 61.1, 56.8, 55.6, 30.2, 29.3, 18.8, 11.3; IR (neat): 3414, 1616, 1381, 1219, 1009, 772 cm⁻¹; FABMS: 203 $[M+Na]^+$; HRMS (ESIMS): m/z calcd for $C_{10}H_{18}O_4Na$ [M+Na]⁺ 225.1102, found 225.1105.

4.1.20. (4R,5S)-4-[(2S,3S)-3-(Chloromethyl)oxiran-2-yl]-2,2,5-trimethyl-1,3-dioxane

To a stirred solution of compound 22 (0.7 g, 3.46 mmol) in 8 mL dry CCl₄ were added triphenylphosphine (1.45 g, 5.2 mmol) and NaHCO₃ (0.29 g, 3.46 mmol). The resulting mixture was vigorously refluxed for 2 h. Solids were filtered and washed with ether. The solvent was removed under reduced pressure and purified by silica gel column chromatography (SiO₂, 25% EtOAc in hexane as eluent) to afford chloro compound (0.69 g, 90%), as a colorless viscous liquid, $R_t=0.65$ (2:3 EtOAc and hexane). $[\alpha]_{D}^{25}$ -21.83 (c 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 1.21 (d, 3H, J=6.8 Hz, CH₃), 1.40 (d, 6H, J=9.8 Hz, 2×CH₃), 1.61–1.73 (m, 1H, CH), 2.87 (dd, 1H, J=1.5, 4.5 Hz, CH), 3.28 (td, 1H, J=1.5, 6.0 Hz, CH), 3.50 -3.69 (m, 3H, CH and CH₂), 3.89-3.94 (m, 1H, CH), 4.10 (dd, 1H, J=3.02, 11.3 Hz, CH); ¹³C NMR (CDCl₃, 75 MHz): δ 98.7, 69.5, 66.0, 58.4, 55.3, 44.2, 30.1, 29.2, 18.7, 11.2; ESIMS: 243.1 $[M+Na]^+$; HRMS (ESIMS): m/z calcd for $C_{10}H_{17}O_3CINa$ [M+Na]⁺ 243.0763, found 243.0775.

4.1.21. (1S)-1-[(4R,5S)-2,2,5-Trimethyl-1,3-dioxan-4-yl]-2propyn-1-ol (23)

To freshly distilled ammonia (10 mL) in 100 mL two neck round bottom flask fitted with a cold finger condenser was added catalytic amount of ferric nitrate followed by the piecewise addition of lithium metal (0.2 g, 30 mmol) at -33 °C and the resulting gray colored suspension was stirred for 30 min. To this reaction mixture compound, chloro compound was added

(0.65 g, 3.0 mmol) in dry THF (4 mL) over a period of 5 min. The reaction mixture was then stirred for 1 h at -33 °C and quenched by the addition of solid ammonium chloride (0.4 g)and the ammonia was then allowed to evaporate. The reaction mixture was extracted with water $(2 \times 10 \text{ mL})$ and ethyl acetate $(2 \times 10 \text{ mL})$. The combined organic layers were washed once with water and brine solution and dried over anhydrous Na₂SO₄ The solvent was removed under reduced pressure. The residue was purified on column chromatography (SiO₂, 45% EtOAc in hexane as eluent) to afford the pure compound **23** (445 mg, 82%) as a clear colorless liquid, $R_{f}=0.50$ (2:3) EtOAc and hexane). $[\alpha]_D^{25} - 3.73$ (c 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 1.14 (d, 3H, J=6.8 Hz, CH₃), 1.42 (d, 6H, J=14.4 Hz, 2×CH₃), 1.75–1.88 (m, 1H, CH), 2.38 (d, 1H, J=1.9 Hz, acetylene), 3.58 (dd, 1H, J=1.3, 11.7 Hz, CH), 3.99 (dd, 1H, J=2.5, 7.7 Hz, CH), 4.07 (dd, 1H, J=2.6, 11.5 Hz, CH), 4.25 (d, 1H, J=7.5 Hz, CH); ¹³C NMR (CDCl₃, 50 MHz): δ 99.1, 82.8, 73.8, 66.8, 62.5, 29.4, 29.1, 24.8, 18.9, 11.0; IR (neat): 3451, 2925, 2364, 1461, 1031, 767 cm^{-1} ; LC-MS: 207 $[M+Na]^+$; HRMS (ESIMS): m/z calcd for $C_{10}H_{16}O_3Na$ [M+Na]⁺ 207.0997, found 207.1002.

4.1.22. (4R,5S)-4-[(1S)-1-Methoxy-2-propynyl]-2,2,5trimethyl-1,3-dioxane (24)

To a stirred suspension of freshly activated sodium hydride (187 mg, 8.15 mmol) in dry THF (3 mL) at 0 °C, alcohol 23 (0.5 g, 2.7 mmol) in dry THF (3 mL) was added dropwise. After stirring for 30 min, MeI (0.25 mL, 4.0 mmol) was added. After completion of the reaction (1 h), the reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc. The organic layer was washed with water and brine solution, dried over anhydrous Na2SO4, and concentrated in vacuo, purification by silica gel column chromatography (SiO₂, 30% EtOAc in hexane as eluent) afforded 24 (524 mg, 98% yield) as colorless oil, $R_f = 0.65$ (2:3 EtOAc and hexane). $[\alpha]_D^{25}$ -3.83 (c 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 1.04 (d, 3H, J=6.8 Hz, CH₃), 1.38 (s, 3H, CH₃), 1.44 (s, 3H, CH₃), 1.66–1.76 (m, 1H, CH), 2.32 (d, 1H, J=1.9 Hz, acetylene), 3.41 (s, 3H, OCH₃), 3.56 (dd, 1H, J=1.51, 11.5 Hz, CH), 3.74 (dd, 1H, J=1.9, 8.9 Hz, CH), 3.99 (dd, 1H, J=2.5, 8.9 Hz, CH), 4.06 (dd, 1H, J=2.8, 11.5 Hz, CH); ¹³C NMR (CDCl₃, 75 MHz): δ 99.0, 81.3, 74.1, 73.2, 71.0, 66.6, 56.6, 29.5, 29.2, 18.9, 10.5; IR (neat): 3451, 2922, 2362, 1638, 1462, 1021, 771 cm⁻¹; LC-MS: 221 $[M+Na]^+$; HRMS (ESIMS): m/z calcd for $C_{11}H_{18}O_3Na [M+Na]^+$ 221.1153, found 221.1156.

4.1.23. Methyl(1S,2E)-3-(1,1,1-tributylstannyl)-1-[(4R,5S)-2,2,5-trimethyl-1,3-dioxan-4-yl]-2-propenyl ether (5)

To a solution of alkyne **24** (0.5 g, 2.5 mmol) in dry CH₂Cl₂ (3 mL) at 0 °C was added Pd(PPh₃)₂Cl₂ (356 mg, 0.5 mmol) and Bu₃SnH (0.2 mL, 7.5 mmol) was the added dropwise and the mixture was stirred at 0 °C for 1 h, TLC indicated that all the starting materials reacted. The mixture was concentrated in vacuo and the residue was subjected to column chromatography (SiO₂, 5% EtOAc in hexane as eluent) to give product **5**^{6d} (0.9 g, 78%) as a colorless oil, R_f =0.90 (1:10 EtOAc and hexane). [α]_D²⁵ +16.5 (*c* 1.10, CHCl₃) {lit.^{6d} [α]_D²⁵ +16.4 (*c* 1.01,

CHCl₃)}; ¹H NMR (CDCl₃, 300 MHz): δ 0.75–0.96 (m, 15H, 3×CH₃ and 3×CH₂), 1.07 (d, 3H, *J*=6.8 Hz, CH₃), 1.20–1.40 (m, 12H, 2×CH₃ and 3×CH₂), 1.40–1.56 (m, 6H, 3×CH₂), 1.72 (m, 1H, CH), 3.25 (s, 3H, OCH₃), 3.35 (dd, 1H, *J*=2.3, 9.1 Hz, CH), 3.56 (d, 1H, *J*=12.8 Hz, CH), 3.74 (dd, 1H, *J*=2.3, 9.1 Hz, CH), 4.04 (dd, 1H, *J*=3.0, 11.3 Hz, CH), 5.74 (d, 1H, *J*=6.0, 18.9 Hz, olefin), 6.14 (d, 1H, *J*=18.9 Hz, olefin); ESIMS: 513.1 [M+Na]⁺; HRMS (ESIMS): *m*/z calcd for C₂₃H₄₆O₃SnNa [M+Na]⁺ 513.2366, found 513.2357.

4.1.24. Methyl(2Z,4E,6R,7S,8S,10E,12E,14S)-7-[(1,1diethyl-1-isopropylsilyl)oxy]-2,14-dimethoxy-4,6,8,10tetramethyl-14-[(4R,5S)-2,2,5-trimethyl-1,3-dioxan-4-yl]-2,4,10,12-tetradecatetraenoate (2)

To a solution of 4 (0.10 g, 0.18 mmol) and 5^{6d} (0.095 g. 0.18 mmol) in dry DMF (3 mL) was added [1,1'-bis(diphenylphosphino)ferrocene]palladium(II)chloride $(PdCl_2(dppf))$ (0.03 g, 0.04 mmol). After the reaction mixture was stirred at 50 °C for 15 h under nitrogen, ice-cold water (4 mL) was added, and the resultant mixture was then extracted with ether $(3 \times 5 \text{ mL})$. The extracts were washed with saturated aqueous NaCl (5 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification of the residue by flash column chromatography (SiO₂, 15% EtOAc in hexane as eluent) gave 2^{6d} (0.067 g, 60%) as a colorless viscous liquid, $R_f = 0.60$ (3:7 EtOAc and hexane). $[\alpha]_{D}^{30} + 32.12 (c \, 0.5, \text{CHCl}_3); {}^{1}\text{H NMR} (\text{CDCl}_3, 200 \text{ MHz}):$ $\delta 0.65$ (q, 4H, J=7.3, 15.3 Hz, 2×CH₂), 0.78 (d, 3H, J=5.9 Hz, CH_3 , 0.82–1.14 (m, 14H, 4× CH_3 and 2×CH), 1.16–1.49 (m, 6H, $2 \times CH_2$ and $2 \times CH$), 1.33 (s, 3H, CH₃), 1.37 (s, 3H, CH₃), 1.64-1.87 (m, 2H, 2×CH), 1.74 (s, 3H, CH₃), 1.98 (s, 3H, CH₃), 2.28 (d, 1H, J=8.1 Hz, CH), 2.71 (m, 1H, CH), 3.25 (s, 3H, OCH₃), 3.32–3.37 (m, 3H, 3×CH), 3.65 (s, 3H, OCH₃), 3.75 (dd, 1H, J=2.2, 8.1 Hz, CH), 3.79 (s, 3H, CO₂CH₃), 4.06 (dd, 1H, J=2.2, 11.0 Hz, CH), 5.33 (dd, 1H, J=7.3, 14.7 Hz, CH), 5.81 (d, 1H, J=11.0 Hz, olefin), 5.97 (d, 1H, J=9.5 Hz, olefin), 6.37 (dd, 1H, J=11.0, 15.3 Hz, olefin), 6.52 (s, 1H, olefin); ¹³C NMR (CDCl₃, 200 MHz): δ 165.6, 142.5, 142.4, 137.8, 130.3, 129.6, 128.7, 125.9, 116.1, 98.7, 80.8, 80.3, 73.9, 67.0, 60.3, 56.2, 52.0, 43.9, 36.9, 35.5, 29.7, 29.5, 29.4, 18.9, 18.8, 17.6, 16.5, 15.5, 14.7, 13.4, 11.1, 7.4, 7.3, 4.5, 4.4; IR (neat): 3435, 2927, 1720, 1456, 1381, 1250, 1199, 1104, 1018, 716 cm⁻¹; LC-MS: 645.3 $[M+Na]^+$ and 681.1 $[M+K]^+$; HRMS (ESIMS): m/z calcd for $C_{35}H_{62}O_7SiNa [M+Na]^+$ 645.4162, found 645.4147.

4.1.25. (4R)-4-[(1R,2R)-2-(Benzyloxy)-1,3-dimethylbutyl]-2-(4-methoxyphenyl)-1,3-dioxane

To a solution of diol 8^{14} (2.5 g, 9.39 mmol) in CH₂Cl₂ (5 mL) at ambient temperature were added *p*-methoxy benzaldehyde dimethyl acetal (6.4 mL, 0.37 mmol) and pyridinium *p*-toluene-sulfonate (PPTS, 0.05 g). The reaction mixture was stirred at ambient temperature for 1 h before it was concentrated in vacuo. The remaining organic residue was purified by flash chromatography (SiO₂, 25% EtOAc in hexane as eluent) to provide the desired product (3.46 g, 96%) as colorless oil, R_f =0.55 (2:3 EtOAc and hexane). [α]_D²⁵ -92.15 (*c* 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 0.90 (d, 3H, *J*=6.8 Hz, CH₃), 0.94 (d, 3H,

J=6.8 Hz, CH₃), 1.06 (d, 3H, J=7.5 Hz, CH₃), 1.23 (dd, 1H, J=1.5, 12.8 Hz, CH), 1.58–1.71 (m, 1H, CH), 1.84–1.96 (m, 1H, CH), 1.97–2.15 (m, 1H, CH), 3.30–3.38 (dd, 1H, J=2.3, 9.8 Hz, CH), 3.80 (s, 3H, OCH₃) 3.87 (td, 1H, J=2.23, 12.1 Hz, CH), 4.13–4.26 (m, 2H, CH₂), 4.57 (ABq, 2H, J= 11.3, 24.9 Hz, benzylic CH₂), 5.29 (s, 1H, CH), 6.84 (d, 2H, J=9.1 Hz, ArH), 7.19–7.39 (m, 7H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 159.8, 139.2, 131.8, 128.3, 127.5, 127.3, 127.4, 113.5, 100.8, 84.2, 75.9, 75.4, 67.3, 55.2, 40.8, 29.9, 28.5, 21.1, 14.9, 10.6; IR (KBr): 3854, 3415, 1618, 1219, 772 cm⁻¹; ESIMS: 407 [M+Na]⁺; HRMS (ESIMS): *m/z* calcd for $C_{24}H_{32}O_4$ Na [M+Na]⁺ 407.2198, found 407.2202.

4.1.26. (3R,4R,5R)-5-(Benzyloxy)-3-[(4-methoxybenzyl)oxy]-4,6-dimethylheptan-1-ol (25)

To a solution of acetonide (4.0 g, 10.41 mmol) in dry CH₂Cl₂ (50 ml) at 0 °C, a solution of DIBAL-H (9 mL, 1.4 M in toluene, 12.5 mmol) was added dropwise. After the addition was complete, the reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was slowly allowed to warm to room temperature, stirred for 2 h for completion of the reaction, and was quenched by the addition of MeOH (1 mL), followed by saturated aqueous sodium potassium tartarate solution at 0 °C and stirred for 0.5 h. The aqueous layer was extracted with CH₂Cl₂ and washed with brine, and dried over anhydrous Na2SO4 and concentrated in vacuo. The crude mixture on column chromatography (SiO₂, 40% EtOAc in hexane as eluent) afforded 25 (3.47 g, 85%) as colorless liquid, $R_{f}=0.45$ (1:1 EtOAc and hexane). $[\alpha]_{D}^{25} - 31.39$ (c 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 0.90 (d, 3H, *J*=6.8 Hz, CH₃), 0.92 (d, 3H, J=6.8 Hz, CH₃), 1.04 (d, 3H, J=6.8 Hz, CH₃), 1.43 (br s, OH) 1.58–1.81 (m, 2H, 2×CH), 1.83–2.01 (m, 2H, 2×CH), 3.23 (dd, 1H, J=3.0, 8.3 Hz, CH), 3.55-3.67 (m, 2H, CH₂), 3.72 (s, 3H, OCH₃), 3.84 (td, 1H, J=6.8, 1.5 Hz, CH), 4.37 (dd, 1H, J=6.8, 11.3 Hz, CH), 4.49 (ABq, 2H, J=10.8, 19.2 Hz, benzylic CH₂), 4.52 (ABq, 2H, J=11.3, 18.1 Hz, benzylic CH₂), 6.79 (d, 2H, J=8.3 Hz, ArH), 7.17 (d, 2H, J=8.3 Hz, ArH), 7.20-7.33 (m, 5H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ 159.4, 137.2, 128.6, 128.3, 128.0, 113.6, 88.6, 75.2, 72.6, 72.1, 58.6, 55.4, 42.8, 33.9, 27.6, 17.4, 9.7; IR (KBr): 3414, 1617, 1353, 772 cm⁻¹; FABMS: 387 $[M+H]^+$; HRMS (ESIMS): m/z calcd for $C_{24}H_{34}O_4Na$ [M+Na]⁺ 409.2722, found 409.2717.

4.1.27. (*3R*,*4R*,*5R*)-*5*-(*Benzyloxy*)-*3*-[(*4*-*methoxy*-*benzyl*)*oxy*]-*4*,*6*-*dimethylheptanal* (*26*)

To a stirred solution of IBX (5.36 g, 19.17 mmol) in 10 mL dry DMSO was added diol **25** (3.7 g, 9.58 mmol) in 15 mL dry CH₂Cl₂ at 0 °C. After completion of addition, the reaction mixture kept at room temperature for 3 h. After completion of reaction by TLC indication, the reaction mixture was filtered on a Celite using diethyl ether. The filtrate was washed with water and brine and dried over anhydrous Na₂SO₄. The ether layer was concentrated under reduced pressure and the crude product was subjected to column chromatography (SiO₂, 18% EtOAc in hexane as eluent) to give pure aldehyde **26** (3.05 g, 83%) as a viscous liquid, R_f =0.70 (3:7 EtOAc and hexane). [α]_D²⁵ -47.34 (*c* 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 0.91 (d, 3H, *J*=3.8 Hz,

CH₃), 0.93 (d, 3H, J=3.8 Hz, CH₃), 1.04 (d, 3H, J=7.5 Hz, CH₃), 1.62–1.75 (m, 1H, CH), 1.85–1.98 (m, 1H, CH), 2.55 (ddd, 1H, J=2.3, 6.0, 16.6 Hz, CH), 2.78 (ddd, 1H, J=2.3, 6.8, 16.6 Hz, CH), 3.27 (dd, 1H, J=3.0, 9.1 Hz, CH), 3.77 (s, 3H, OCH₃), 4.23–4.62 (m, 5H, 2×benzylic CH₂ and CH), 6.79 (d, 2H, J=8.3 Hz, ArH), 7.14 (d, 2H, J=8.3 Hz, ArH), 7.19–7.34 (m, 5H, ArH), 9.76 (t, 1H, J=2.3 Hz, CHO); IR (neat): 2953, 2856, 1683, 1352, 772 cm⁻¹; HRMS (ESIMS): m/z calcd for C₂₄H₃₂O₄Na [M+Na]⁺ 407.2198, found 407.2004.

4.1.28. (5R,6R,7R)-7-(Benzyloxy)-5-[(4-methoxybenzyl)oxy]-6.8-dimethylnonan-3-ol (27)

Freshly prepared EtMgBr (prepared in situ from 390 mg (15.62 mmol) of Mg and 1.42 g (15.62 mmol) of ethyl bromide in 10 mL of dry THF) was added dropwise to a stirred solution of aldehyde 26 (2 g, 5.2 mmol) in dry THF (10 mL) at 0 °C. After addition was completed, the reaction mixture was allowed to stir at room temperature for 2 h and then guenched with saturated aqueous NH₄Cl solution. The organic layer was separated and the compound from aqueous layer was extracted with ethyl acetate $(2 \times 20 \text{ mL})$. The combined organic layers were washed with water and brine solution and dried over Na₂SO₄. Concentration under reduced pressure and purification by column chromatography (SiO₂, 15% EtOAc in hexane as eluent) afforded 27 (1.93 g, 90%) as a colorless viscous liquid, $R_f=0.60$ (3:7 EtOAc and hexane). $[\alpha]_{D}^{25} - 29.18$ (c 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): $\delta 0.83 - 0.98$ (m, 9H, 3×CH₃), 0.99-1.08 (t, 3H, J= 6.8 Hz, CH₃), 1.33–1.63 (m, 2H, CH₂), 1.68–2.02 (m, 2H, CH₂), 2.57 (br s, OH), 3.13–3.28 (m, 1H, CH), 3.47–3.69 (m, 1H, CH), 3.76 (s, 3H, OCH₃), 3.82-3.94 (m, 1H, CH), 4.33-4.60 (m, 5H, 2×benzylic CH₂ and CH), 6.75-6.83 (m, 2H, ArH), 7.16 (d, 2H, J=8.3 Hz, ArH), 7.12-7.34 (m, 5H, ArH); IR (KBr): 3414, 1617, 1353, 772 cm⁻¹; FABMS: 415 $[M+H]^+$; HRMS (ESIMS): m/z calcd for $C_{26}H_{38}O_4Na$ [M+Na]⁺ 437.2667, found 437.2680.

4.1.29. (3R,4R,5R)-5-(Benzyloxy)-1-ethyl-3-[(4-methoxybenzyl)oxy]-4,6-dimethylheptyl acetate (28)

To a solution of 27 (1.5 g, 3.62 mmol), CH₂Cl₂ (8 mL), Et₃N (1.52 mL, 10.86 mmol) were added DMAP (0.5 equiv) and acetic anhydride (0.4 mL, 4.3 mmol) at 0 °C. After the reaction mixture was stirred at room temperature for 3 h, the reaction mixture was quenched with ice-cold water and the resultant mixture was then extracted with CH₂Cl₂. The extracts were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, 10% EtOAc in hexane as eluent) to afford 28 (1.55 g, 94%) as colorless oil, $R_f = 0.68$ (1:4 EtOAc and hexane). $[\alpha]_D^{25}$ -40.62 (c 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 0.85 (d, 3H, J=6.8 Hz, CH₃), 0.86–0.94 (m, 6H, 2×CH₃), 1.04 (d, 3H, J=6.8 Hz, CH₃), 1.05 (d, 3H, J=6.8 Hz, CH₃), 1.54–1.69 (m, 3H, $2 \times CH_2$ and CH), 1.79 (s, $1/3 \times CH_3$), 1.89 (s, $2/3 \times CH_3$), 1.75-2.09 (m, 2H, CH₂), 3.24 (m, 1H, CH), 3.69-3.85 (m, 1H, CH), 3.78 (s, 3H, OCH₃), 4.17–4.60 (m, 4H, 2×benzylic CH₂), 4.80 (m, 1/3H, CH), 4.93 (m, 2/3H, CH), 6.80 (d, 2H, J=8.3 Hz, ArH), 7.18-7.33 (m, 7H, ArH); IR (neat): 3450, 2964, 1734, 1243, 1067, 761 cm⁻¹; LC-MS: 479.2 [M+Na]⁺;

HRMS (ESIMS): m/z calcd for $C_{28}H_{40}O_5Na$ [M+Na]⁺: 479.2773, found: 479.2771.

4.1.30. (*3R*,*4S*,*5R*)-*1*-*Ethyl*-*3*,*5*-*dihydroxy*-*4*,*6*-*dimethyl*-*heptyl acetate* (**29**)

To a solution of compound 28 (1.2 g, 2.63 mmol) in dry EtOAc (10 mL) was added catalytic amount of Pd/C (10%) and the reaction mixture was stirred at room temperature under hydrogen atmosphere for 2 h. The reaction mixture was filtered off, washed with ethyl acetate, the filtrate was concentrated under reduced pressure, and purified by silica gel column chromatography (SiO₂, 40% EtOAc in hexane as eluent) to afford compound **29** (0.588 g, 90%) as a colorless liquid, $R_f=0.58$ (1:1 EtOAc and hexane). $[\alpha]_{D}^{25}$ +10.13 (c 1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 0.82-1.02 (m, 12H, 4×CH₃), 1.35-1.89 (m, 5H, $2 \times CH_2$ and CH), 2.03 (s, $1/3 \times CH_3$), 2.05 (s, 2/3×CH₃), 2.56 (m, 1/2H, OH), 2.96 (m, 1H, CH), 3.27 (q, 1H, J=6.8, 11.3 Hz, CH), 3.41 (br s, 1/2H, OH), 3.77 (dd, 1/ 2H, J=1.5, 11.3 Hz, CH), 3.99 (m, 1/2H, CH), 4.79-5.00 (m, 1H, CH); IR (neat): 3427, 2966, 1377, 1022, 609 cm⁻¹; ESIMS: 269.1 $[M+Na]^+$; HRMS (ESIMS): m/z calcd for $C_{13}H_{26}O_4Na$ [M+Na]⁺ 269.1728, found 269.1718.

4.1.31. 1-[(4R,5R,6R)-2,2-Di(tert-butyl)-6-isopropyl-5methyl-1,3,2-dioxasilinan-4-yl]methylpropyl acetate (**30**)

To a solution of 29 (450 mg, 1.83 mmol) in dry DMF (3 mL) was added dropwise 2,6-lutidine (0.62 mL, 5.5 mmol, 98%) followed by t-Bu₂Si(OTf)₂ (0.4 mL, 2.2 mmol, 97%) at 0 °C. After stirred at 25 °C for 2 h, the reaction mixture was guenched with saturated aqueous NaHCO₃ (10 mL) at 0 °C. The resultant mixture was then extracted with $Et_2O(3 \times 10 \text{ mL})$. The extracts were washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, 6% EtOAc in hexane as eluent) to afford 30 (0.6 g, 85%) as colorless oil, $R_f=0.62$ (1:9 EtOAc and hexane). $[\alpha]_D^{25}$ +47.64 (c 1, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 0.72 (t, 3H, J=7.8 Hz, CH₃), 0.85 (d, 3H, J=4.7 Hz, CH₃), 0.92 (td, 3H, J=3.12, 7.8 Hz, CH₃), 1.01 (s, 18H, 2×tert-butyl), 1.04 (d, 3H, J=7.8 Hz, CH₃), 1.46–1.93 (m, 5H, 2×CH₂ and CH), 2.03 (s, 3H, OCOCH₃), 2.17 (m, 1H, CH), 3.67 (dd, 1H, J=1.6, 9.4 Hz, CH), 4.02 (m, 1H, CH), 5.14 (m, 1H); IR (KBr): 3447, 2969, 2931, 2364, 1741, 1022 cm⁻¹; LC–MS: 409.3 [M+Na]⁺; HRMS (ESIMS): m/z calcd for $C_{21}H_{42}O_4SiNa [M+Na]^+$ 409.2750, found 409.2739.

4.1.32. 1-[(4R,5R,6R)-2,2-Di(tert-butyl)-6-isopropyl-5methyl-1,3,2-dioxasilinan-4-yl]-2-butanol (**31**)

To a solution of **30** (500 mg, 1.3 mmol) in dry MeOH (5 mL) was added 5 M NaOMe/MeOH (0.8 mL, 3.9 mmol) at 0 °C. After the reaction mixture was stirred at 25 °C for 2 h, the reaction mixture was quenched with ion-exchange resin IR-120B. The resultant mixture was filtered and the resin was washed with MeOH. The combined filtrate and washings were concentrated in vacuo. Purification of the residue by column chromatography (SiO₂, 12% EtOAc in hexane as eluent) gave **31** (0.4 g, 90%) as a colorless viscous liquid, $R_f=0.55$ (1:4 EtOAc and hexane). $[\alpha]_D^{25}$ +49.84 (*c* 1, CHCl₃); ¹H NMR (CDCl₃, 400 MHz):

δ 0.76 (d, 3H *J*=6.8 Hz, CH₃), 0.86 (d, 3H, *J*=6.8 Hz, CH₃), 0.95 (t, 3H, *J*=7.6 Hz, CH₃), 1.00 (d, 3H, *J*=6.8 Hz, CH₃), 1.03 (s, 18H, 2×*tert*-butyl), 1.55–1.36 (m, 3H, CH₂ and CH), 1.56–1.80 (m, 2H, CH₂), 2.15 (m, 1H, CH), 3.71 (dd, 1H, *J*= 2.3, 9.1 Hz, CH), 3.73–3.81 (m, 1H, CH), 3.93 (br s, OH), 4.29 (ddd, 1H, *J*=1.5, 5.3 Hz, CH); ¹³C NMR (CDCl₃, 75 MHz): δ76.4, 73.6, 69.9, 38.9, 36.7, 30.5, 30.2, 27.5, 27.3, 21.6, 20.8, 20.1, 13.6, 13.1, 10.3; IR (KBr): 3471, 2965, 2364, 1463, 1041 cm⁻¹; LC–MS: 367.2 [M+Na]⁺; HRMS (ESIMS): *m/z* calcd for C₁₉H₄₀O₃SiNa [M+Na]⁺ 367.2644, found 367.2643.

4.1.33. 1-[(4R,5R,6R)-2,2-Di(tert-butyl)-6-isopropyl-5methyl-1,3,2-dioxasilinan-4-yl]-2-butanone (**3**)

To a solution of alcohol **31** (0.35 g, 1.08 mmol) in CH₂Cl₂ (5 mL) were added dry pyridine (0.620 mL, 5.08 mmol) and Dess-Martin periodinane (0.863 g, 2.03 mmol) at 0 °C. After stirring for 2 h at 25 °C, the reaction mixture was quenched with saturated aqueous Na₂SO₃ (10 mL) and the resultant mixture was then extracted with $Et_2O(10 \text{ mL} \times 3)$. The extracts were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, 10% EtOAc in hexane as eluent) to afford 3^{6d} (306 mg, 88%) as a white solid, $R_f=0.80$ (3:7 EtOAc and hexane). Mp: 40–41 °C {lit.^{6d} mp: 40.0–40.5 °C}; $[\alpha]_D^{25}$ +84.8 (*c* 0.9, CHCl₃) {lit.^{6d} $[\alpha]_D^{25}$ +85.2 (*c* 0.89, CHCl₃)}; ¹H NMR (CDCl₃, 300 MHz): δ 0.72 (d, 3H, J=6.8 Hz, CH₃), 0.86 (d, 3H, J=6.8 Hz, CH₃), 0.97 (s, 9H, tert-butyl), 0.99 (s, 9H, tertbutyl), 1.00 (d, 3H, J=6.8 Hz, CH₃), 1.06 (t, 3H, J=7.6 Hz, CH₃), 1.72 (dseptet, 1H, J=6.8, 2.3 Hz, CH), 2.22 (m, 1H, CH), 2.35 (dd, 1H, J=14.3, 3.1 Hz, CH), 2.51 (dq, 1H, J=10.6, 7.5 Hz, CH₂), 2.54 (dq, 1H J=10.6, 7.5 Hz, CH₂), 2.69 (dd, 1H, J=14.3, 10.5 Hz, CH), 3.66 (dd, 1H, J=9.8, 2.2 Hz, CH), 4.60 (ddd, 1H, J=9.8, 6.0, 3.7 Hz, CH); ¹³C NMR (CDCl₃, 75 MHz): δ 210.3, 76.5, 73.7, 45.4, 38.7, 36.1, 30.3, 27.4, 27.2, 21.6, 20.8, 20.0, 13.7, 13.1, 7.6; IR (neat): 2965, 2859, 1717, 1469, 1038, 825 cm⁻¹; LC-MS: 343.1 [M+H]⁺; HRMS (ESIMS): m/z calcd for C₁₉H₃₈O₃SiNa [M+Na]⁺ 365.2487, found 365.2485.

Acknowledgements

KBR thanks UGC New Delhi for the financial support.

References and notes

- (a) Werner, G.; Hagenmaier, H.; Drautz, H.; Baumgartner, A.; Zahner, H. J. Antibiot. 1984, 37, 110–117; (b) Werner, G.; Hagenmaier, H.; Albert, K.; Kohlshorn, H.; Drautz, H. Tetrahedron Lett. 1983, 24, 5193–5196.
- Bowman, E. J.; Siebers, A.; Altendorf, K. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 7972–7976.
- (a) Suundquist, K. T.; Marks, S. C. J. Bone Miner. Res. 1994, 9, 1575– 1582; (b) Woo, J.-T.; Ohba, Y.; Tagami, K.; Sumitani, K.; Yamaguchi, K.; Tsuji, T. Biol. Pharm. Bull. 1996, 19, 297–302.
- (a) Meyer, M.; Keller-Schierlein, W.; Drautz, H.; Blank, W.; Zahner, H. *Helv. Chim. Acta* **1985**, *68*, 83–94; (b) Baker, G. H.; Brown, P. J.; Dorgan, R. J. J.; Everett, J. R.; Ley, S. V.; Slawin, A. M. Z.; William, D. J. *Tetrahedron Lett.* **1987**, *28*, 5565–5568; (c) Deeg, M.; Hagenmaier, H.; Kretschmer, A. J. Antibiot. **1987**, *40*, 320–328; (d) Baker, G. H.; Brown,

P. J.; Dorgan, R. J. J.; Everett, J. R. J. Chem. Soc., Perkin Trans. 2 1989, 1073–1079.

- (a) Siebers, A.; Altendorf, K. J. Biol. Chem. 1989, 264, 5831–5838; (b) Droese, S.; Bindseil, K. U.; Bowman, E. J.; Siebers, A.; Zeeck, A.; Altendorf, K. Biochemistry 1993, 32, 3902–3906.
- (a) Evans, D. A.; Calter, M. A. *Tetrahedron Lett.* **1993**, *34*, 6871–6874;
 (b) Toshima, K.; Jyojima, T.; Yamaguchi, H.; Murase, H.; Yoshida, T.; Matsumura, S.; Nakata, M. *Tetrahedron Lett.* **1996**, *37*, 1069–1072; (c) Toshima, K.; Yamaguchi, H.; Jyojima, T.; Noguchi, Y.; Nakata, M.; Matsumura, S. *Tetrahedron Lett.* **1996**, *37*, 1073–1076; (d) Toshima, K.; Jyojima, T.; Yamaguchi, H.; Noguchi, Y.; Yoshida, T.; Murase, H.; Nakada, M.; Matsumura, S. *J. Org. Chem.* **1997**, *62*, 3271–3284; (e) Scheidt, K.; Tasaka, A.; Bannister, T. D.; Wendt, M. D.; Roush, W. R. *Angew. Chem., Int. Ed.* **1999**, *38*, 1652–1655; (f) Scheidt, K.; Bannister, T. D.; Tasaka, A.; Wendt, M. D.; Savall, B. M.; Fegley, G. J.; Roush, W. R. *J. Am. Chem. Soc.* **2002**, *124*, 6981–6990; (g) Hanessian, S.; Ma, J.; Wang, W. J. Am. Chem. Soc. **2001**, *123*, 10200–10206.
- (a) Roush, W. R.; Bannister, T. D. Tetrahedron Lett. 1992, 33, 3587– 3590; (b) Roush, W. R.; Bannister, T. D.; Wendt, M. D. Tetrahedron Lett. 1993, 34, 8387–8390; (c) Paterson, I.; Bower, S.; McLeod, M. D. Tetrahedron Lett. 1995, 36, 175–178; (d) Hanessian, S.; Wang, W.; Gai, Y.; Olivier, E. J. Am. Chem. Soc. 1997, 119, 10034–10041; (e) Breit, B.; Zahn, S. K. Tetrahedron Lett. 1998, 39, 1901–1904; (f) Marshall, J. A.; Adams, N. D. Org. Lett. 2000, 2, 2897–2900.
- (a) Yadav, J. S.; Rao, C. S.; Chandrashekar, S.; Ramarao, A. V. *Tetra*hedron Lett. **1995**, *36*, 7717–7720; (b) Yadav, J. S.; Abraham, S.; Reddy,

M. M.; Sabitha, G.; Sankar, A. R.; Kunwar, A. C. *Tetrahedron Lett.*2001, 42, 4713–4716; (c) Yadav, J. S.; Abraham, S.; Reddy, M. M.;
Sabitha, G.; Sankar, A. R.; Kunwar, A. C. *Tetrahedron Lett.* 2002, 43, 3453; (d) Yadav, J. S.; Srinivas, R.; Sathaiah, K. *Tetrahedron Lett.*2006, 47, 1603–1606.

- (a) Toshima, K.; Tatsuta, K.; Kinoshiat, M. *Tetrahedron Lett.* **1986**, *27*, 4741–4744;
 (b) Toshima, K.; Mukaiyama, S.; Kinoshita, M.; Tatsuta, K. *Tetrahedron Lett.* **1989**, *30*, 6413–6416;
 (c) Toshima, K.; Misawa, M.; Ohta, K.; Tatsuta, K.; Kinoshita, M. *Tetrahedron Lett.* **1989**, *30*, 6417–6420;
 (d) Toshima, K.; Yanagawa, K.; Mukaiyama, S.; Tatsuta, K. *Tetrahedron Lett.* **1990**, *31*, 6697–6698;
 (e) Toshima, K.; Nozaki, Y.; Mukaiyama, S.; Tamai, T.; Nakata, M.; Tatsuta, K.; Kinoshita, M. *J. Am. Chem. Soc.* **1995**, *117*, 3717–3727.
- 10. Van Horn, D. E.; Negishi, E. J. Am. Chem. Soc. 1978, 100, 2252-2254.
- Roush, W. R.; Straub, J. A.; VanNieuwenhze, M. S. J. Org. Chem. 1991, 56, 1636–1648.
- Yadav, J. S.; Deshpande, P. K.; Sharma, G. V. M. *Tetrahedron* 1990, 46, 7033–7046.
- Zhang, H. X.; Guibe, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857– 1867.
- Yadav, J. S.; Reddy, K. B.; Sabitha, G. Tetrahedron Lett. 2004, 45, 6475– 6476.
- 15. Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 4871-4874.
- 16. Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813-817.
- Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. S. J. Am. Chem. Soc. **1984**, 106, 158–163.